[RESEARCH LABORATORIES, AMERICAN HOME FOODS, INC.]

Glyoxal Hemimercaptals

By Frank Kipnis¹ and John Ornfelt

A series of crystalline hemimercaptals was prepared by the interaction of glyoxals with mercaptans. The products may be recrystallized from non-polar solvents and are stable over extended periods of time.

Hemimercaptals are rather unusual compounds whose methods of preparation have not been studied too extensively. A number have been prepared, derived from formaldehyde,² benzaldehyde,⁸ methylglyoxal and phenylglyoxal with thioglycolic acid derivatives and with cysteine,⁴ and hemimercaptols have been reported from alloxan,5 polycyclic quinones⁶ and from α,β -diketones.⁷ It will be noted that of the hemimercaptals from glyoxals, only those have been prepared which contain carboxylic functions. It was desirable to prepare glyoxal hemimercaptals from alkyl, aryl and heterocyclic mercaptans containing no solubilizing groups. The results of this study are indicated in Table I.

it would seem that the hemimercaptals dissociate on heating even in non-polar solvents, since the solutions have a rather strong yellow coloration, indicative of the presence of the glyoxal, whereas in solid form, the compounds are colorless crystals which seem perfectly stable, showing no dissociation or change in melting point after more than six months of storage.

Phenylglyoxal,⁸ p-ethoxyphenylglyoxal,⁹ thio-phene-2-glyoxal¹⁰ and furyl-2-glyoxal¹¹ were prepared by the oxidation of the corresponding methyl ketone with selenium dioxide.

Most of the mercaptans were available from commercial sources. 2-Thenylmercaptan was prepared from 2-thenyl chloride via the isothiouronium

TABLE I	
∕ОН	
HEMIMERCAPTALS R-CO-C	
\SR'	

	`SR'										
			Recrys- Analyses, ⁴ %								
R'	R	M.p., °C.b	Yield, %	tallizing solvent	Formula	Carbon H	alculated	Sulfur	Carbon I	Found Hyd rogen	C.1.1.
										-	
Ethyl	Сень	78-80	81.5	Ligroin	C10H12O2S	61.19	6.17	16.34	61.26	6.50	16.49
n-Propyl	CeHs	84	84	Ligroin	C11H14O2S	62.83	6.71	15.25	62.58	6.84	15.60
i-Propyl	C+H	47-49	67	Ligroin	C11H14O2S	62.83	6.71	15.25	62.86	6.96	15.65
n-Heptyl	CH4	81	71	Ligroin	C15H22O2S	67.63	8.32	12.04	67.24	8.36	12,29
n-Dodecy	C:H:	80-81	83.5	Hexane	$C_{28}H_{82}O_2S$	71.38	9.58	9.53	71.23	9,76	9,78
n-Hexadecyl	CeHs	88	42.3	Heptane	C24H402S	73.42	10.57	8.17	72.85	9,95	8.62
n-Octadecyl	CIHI	90.5-91	35.4	Hexane	C26H44O2S	74.23	10.54	7.62	74.16	10.63	8.12
Benzyl	CiHi	72-74	77,5	Ligroin	$C_{16}H_{14}O_{2}S$	69.74	5.46	12.41	70.11	5.86	12.76
Phenyl	CeHs	97-98	80	Heptane	$C_{14}H_{12}O_{2}S$	68,83	4,95		68.73	4.67	
Furfuryl	C ₆ H ₈	40	66	Pentane	$C_{12}H_{12}O_{2}S$	62.88	4.87		62.20	4,92	
p-Cresyl	CaHs	4445	70	Pentane	$C_{1b}H_{14}O_{2}S$	69.74	5.46		70. 0 1	5.69	
Thiophene-2-methyl	p-C:H:-O-C:H:	37-38	89	Hexane	C18H14O8S	58.42	5,23	20.79	58.60	5.50	20.65
n-Dodecy1	p-C:H-O-C:H	65-66	9 2	Hexane	C22H46O,S	69,43	9.53	8.42	69,04	9.46	8.69
Benzyl	p-CaHa-O-CaHa	64-65	95	Hexane	$C_{17}H_{18}O_8S$	67.52	6.00		67.80	6.19	
n-Propyl	C4H4O	105-106	98	Heptane	CaH12OaS	53.98	6.04		53,93	6.14	
n-Dodecyl	C4H10	105-106	99	Heptane	C16HarO2S	66.22	9.26	9.82	66.49	9.28	10.00
n-Hexyl	C4H4O	94.5-95.5	94	Heptane	C12H16O5S	59.47	7.49	13.23	59.07	7.46	13.25
n-Heptyl	C4H2S	76-77	74	Heptane	C11H202S2	57.31	7.40		57.02	7.37	
Methyl	C4H4S	91-93	84	Hexane	C7H8O2S2	44,66	4.28		44,63	4.65	
Ethyl	C4H4S	58-59	71	Hexane	CeH102St	47.50	4.48	31.70	47.42	5.08	31.71
n-Propyl	C4H4S	69	87	Hexane	CoH12O2St	49,97	5.59	29.64	50.53	6.01	29.72
Benzyl	C4H4S	7 8 -79	70	Hexane	C11H12O2S2	59. 0 6	4.57		59,10	4.81	
β -Naphthyl	C4H4S	9 8 –99	84	Hexane	C16H12O2S2	63.97	4.03	21.35	63.81	4.24	21.80
Thiophene-2-methyl	C4H4S	54-55	62	Hexane	C11H102St	48.86	3.73	33.57	48.88	4.03	35.59
n-Dodecyl	C4H4S	80-81	95	Hexane	C18HssO2S2	63.11	8.83		63.21	8.97	
Phenyl	C4H2S	55-56	73	Hexane	C12H10O2S2	57.57	4.03	25.61	57.49	4.55	25.68
n-Octadecy!	C.H.S	91	89	Hexane	C14H42O1S1	67.55	9.92	15.03	67.17	9.70	15.70
Analyzes by Ockwold I aboratories Alexaudria Virginia & All malting points taken with Richer-Johns apparatus											

^a Analyses by Oakwold Laboratories, Alexandria, Virginia. ^b All melting points taken with Fisher-Johns apparatus.

It has been found possible to prepare crystalline hemimercaptals in good yields by mixing the glyoxal with the mercaptan and recrystallizing from the appropriate solvent. From visual evidence,

(1) Oxford Products. Inc., Cleveland 3, Ohio.

T. G. Levi, Gazz. chim. ital., 62, 775 (1932).
Fromm, Ann., 235, 135 (1889).

(4) M. P. Schubert, J. Biol. Chem., 111, 671 (1935).

(5) E. L. d'Ouville, F. J. Myers and R. Connor, THIS JOURNAL, 61, 2033 (1939).

(6) A. Schonberg, O. Schütz, G. Arend and J. Peter, Ber., 60, 2344 (1927).

(7) (a) T. Reichstein and H. Staudinger, Swiss Patents 128,720, 130,605, 130,606, 130,607, 130,608; (b) British Patent 260,960; (c) German Patent 489,613; (d) U. S. Patent 1,696,419. salt.12 Furfuryl mercaptan has been prepared by several methods,¹³⁻¹⁵ but that of Reichstein¹⁴ gave the most consistent results.

(8) H. A. Riley and A. R. Gray, "Organic Syntheses," Coll. Vol. II, John Wiley and Sons, Inc., New York, N. Y., 1943, p. 509.

(9) F. Kipnis, H. Soloway and J. Ornfelt, THIS JOURNAL, 69, 1231 (1947).

- (10) F. Kipnis and J. Ornfelt, ibid., 68, 2734 (1946).
- (11) F. Kipnis and J. Ornfelt, ibid., 70, 3948 (1948).
- (12) F. Kipnis and J. Ornfelt, ibid., 71, 3571 (1949).
- (13) W. R. Kirner and G. H. Richter, ibid., 51, 3134 (1929); W. R. Kirner, ibid., 50, 1958 (1928).

(14) H. Staudinger and T. Reichstein, U. S. Patent 1,715,795.

(15) J. Giral and A. Garciá Fernández, Anoles inst. invest. cient. Univ. Nuevo Leon, 1, 149 (1944).

Experimental

Thiophene-2-glyoxal *n*-Heptylhemimercaptal.—Fourteen grams (0.1 mole) of thiophene-2-glyoxal was mixed with 13.2 g. (0.1 mole) of *n*-heptyl mercaptan. A considerable amount of heat was generated, and on allowing the mixture to cool to room temperature, the entire mass crystallized. The product was purified by recrystallization from heptane, giving colorless crystals melting at $76-77^{\circ}$ d.

The other hemimercaptals were prepared in a similar manner.

Morris Plains, N. J.

RECEIVED OCTOBER 11, 1951

[CONTRIBUTION FROM VENEREAL DISEASE EXPERIMENTAL LABORATORY, U. S. PUBLIC HEALTH SERVICE, SCHOOL OF PUBLIC HEALTH, UNIVERSITY OF NORTH CAROLINA]

The Ultraviolet Absorption Spectra of Arylphosphonic and Diarylphosphinic Acids

By H. H. JAFFÉ AND LEON D. FREEDMAN

The ultraviolet absorption spectra of a number of arylphosphonic and diarylphosphinic acids, and of a few related compounds have been determined. These spectra indicate that no resonance exists between a "pentavalent" phosphorus atom and an aromatic nucleus attached to it and that the P-O bond in the phosphoryl group has no appreciable double bond character. Evidence is also presented which confirms the "keto" structure usually assigned to benzenephosphonous acid.

In connection with a study of certain organic phosphorus compounds in this Laboratory, it appeared desirable to investigate the effect of the phosphono $(-PO_{2}H_{2})$ and phosphinico $(>PO_{2}H)$ groups on the ultraviolet absorption spectra of benzene and its derivatives. The present paper describes the results obtained with arylphosphonic acids, diarylphosphinic acids and a few related compounds.

TABLE I								
	Prim	ary band	Second	iary band				
a .	λ <u>max</u> .		λ max.					
Compound	mμ	emax.	mμ	€max.				
C ₆ H ₆			254.5	180				
C ₆ H ₅ PO ₃ H ₂			263.5	524				
C ₆ H ₅ PO ₅ H ⁻			263.0	383				
C ₆ H ₅ PO ₃ -			258.0	239				
C ₆ H ₅ PO ₂ H ₂	216	7,100	264.5	616				
C ₆ H ₅ PO ₂ H ⁻			263.5	477				
(C ₆ H ₅) ₂ PO ₂ H	224	13,100	265.0	1,200				
$(C_6H_5)_2PO_2^-$	222	12,000	264.0	882				
(C ₆ H ₅) ₃ PO	224	21,300	265.5	2,420				
(C ₆ H ₅) ₃ P ^a			261°	11,000°				
CIC ₆ H ₅			264.0	206				
o-ClC6H4PO2H2	217	12,300	270.5	798				
m-ClC ₆ H ₄ PO ₂ H ₂	215	8,130	271.0	649				
p-ClC ₆ H ₄ PO ₃ H ₂	224	14,400	264.0	292				
$(o-ClC_{5}H_{4})_{2}PO_{2}H$			273.5	1,738				
$(m-C1C_6H_4)_2PO_2H$			273.0	1,390				
(p-ClC ₆ H ₄)2PO2H ^e	234	22,200	265.0	1,000				
NO2C6H5	260	7,100						
<i>m</i> -NO ₂ C ₆ H ₄ PO ₃ H ₂	263	6,400						
₽-NO₂C₅H₄PO₃H₂ ^d	270	10,400						
p-NO₂C6H4PO3H [−]	272	10,800						
₽-NO₂C₅H₄PO ; ᢇ	278	10,300						
$(m-NO_2C_6H_4)_2PO_2H^{f}$	263	14,300						
(p-NO2C6H4)2PO2H	274	21,100						
(<i>p</i> -NO ₂ C ₆ H ₄) ₂ PO ₂ ⁻	272	21,400						
$(m-C1C_6H_4)C_6H_5PO_2H$			272.5	1,250				
$(m-NO_2C_6H_4)C_6H_5PO_2H^g$	263	7,570						
(p-NO ₂ C ₆ H ₄)C ₆ H ₅ PO ₂ H	272	11,500						
(p-NO2C6H4)C6H5PO2-	272	11,500						
a The creatry of this		ound he	a heen	previouely				

^a The spectrum of this compound has been previously determined by J. E. Purvis, J. Chem. Soc., 105, 1372 (1914). ^b It is uncertain whether these values should be assigned to the primary or secondary band. ^c The purity of this compound was doubted at first when the spectrum was determined and the strong absorption band at 234 mµ was observed. Therefore, the compound was recrystallized two more times from dilute alcohol; no change in the spectrum was noted. ^d Secondary primary band; λ_{max} 213, ϵ_{max} 5,950. ^o Second primary band: λ_{max} 218, ϵ_{max} 26,100. ^e Second primary band: λ_{max} 219, ϵ_{max} 26,100. ^e Second primary band: λ_{max} 219, ϵ_{max} 26,100.

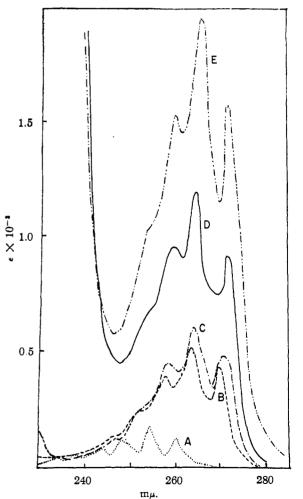


Fig. 1.—Absorption spectra: A, benzene; B, benzenephosphonic acid; C, benzenephosphonous acid; D, diphenylphosphinic acid; E, triphenylphosphine oxide.

Experimental

All compounds studied were prepared in this Laboratory. The synthesis of the arylphosphonic and the symmetrical